
BiomechanicsBiomechanics is the science concerned with the internal and external forces acting on the human body and the effects produced by these forces. Kinetics is a study of the cause of motion, namely forces and torques, e.g. forces between the feet and the ground when jumping and Kinematics is the study of movement regarding the amount of time taken to carry out the activity.
Distance and displacementDistance (length of the path a body follows) and displacement (length of a straight line joining the start and finish points) are quantities used to describe a body's motion. e.g. in a 400m race on a 400m track, the distance is 400 metres, but their displacement will be zero metres (start and finish at the same point). Speed and velocitySpeed and velocity describe the rate at which a body moves from one location to another. The average speed of a body is obtained by dividing the distance by the time, and average velocity is obtained by dividing the displacement by the time, e.g. a swimmer in a 50m race in a 25m long pool who completes the race in 71 seconds  distance is 50m, and displacement is 0m (swimmer is back where they started), so the speed is 50/71= 0.70m/s and velocity is 0/71=0 m/s
AccelerationAcceleration is defined as the rate at which velocity changes with respect to time.
From Newton's 2nd law:
If the mass of a sprinter is 60kg and the force exerted on the starting blocks is 600N, then acceleration = 600 ÷ 60 = 10 msec² Acceleration due to gravityWhile a body is in the air, it is subject to a downward acceleration, due to gravity, of approximately 9.81m/s² Vectors and scalarsDistance and speed can be described in terms of magnitude (amount) and are known as scalars. Displacement, velocity and acceleration require magnitude and direction and are known as vectors. Components of a vector
Let us consider the horizontal and vertical components of velocity of the medicine ball in Figure 1. Figure 2 indicates the angle of release of the medicine ball is 35° and the velocity at release as 12 metres/second.
Let us now consider the distance the medicine ball will travel horizontally (its displacement). Distance (D) = ((v² × sinØ × cosØ) + (v × cosØ × sqrt ((v × sinØ)² + 2gh))) ÷ g Where v = 12, Ø = 35, h = 2m (height of the shot above the ground at release) and g = 9.81
The time of flight of the shot can be determined from the equation:
Uniformly accelerated motionWhen a body experiences the same acceleration throughout an interval of time, its acceleration is said to be constant or uniform, and the following equations apply:
Moment of force (torque)The moment of force or torque (τ) is defined as the application of a force at a perpendicular distance to a joint or point of rotation. Torque (τ = rFsin θ) depends on three quantities:
Angular KinematicsAngular distance and displacementWhen a rotating body moves from one position to another, the angular distance through which it moves is equal to the angular path's length. The angular displacement that a rotating body experience is similar to the angle between the body's initial and final position. Angular movement is usually expressed in radians where 1 radian = 57.3° Angular speed, velocity and acceleration
Angular MomentumAngular momentum is defined as angular velocity x moment of inertia The angular momentum of a system remains constant throughout a movement provided nothing outside of the system acts with a turning moment on it. This is known as the Law Conservation of Angular Momentum. (e.g. if a skater, when already spinning, moves their arms out to the side, then the rate of spin will change, but the angular momentum will stay the same).
Linear KineticsKinetics is concerned with what causes a body to move. Momentum, inertia, mass, weight and force
The classification of external or internal forces depends on the definition of the 'system'. In biomechanics, the body is seen as the 'system' so any force exerted by one part of the system on another part of the 'system' is known as an internal force all other forces are external. Newton's Laws of Motion^{[1]}
Newton's law of gravitation^{[1]}
Kinetic Energy and PowerKinetic energy is the mechanical energy possessed by a moving object. Kinetic Energy = ½ x mass x velocity² (joules) Power is defined as the rate at which energy is used or created from other forms.
Angular KineticsTranslation and coupleA force that acts through the centre of a body results in movement (translation). A force whose line of action does not pass through the body's centre of gravity is called an eccentric force and results in movement and rotation. For example, if you push through the centre of an object, it will move forward in the force's direction. If you push to one side of the object (eccentric force), it will move forward and rotate A couple is an arrangement of two equal and opposite forces that cause a body to rotate. LeversA lever is a rigid structure, hinged at one point and to which forces are applied at two other locations. The hinge is known as the fulcrum. The two forces that act on the lever are the weight that opposes movement and a force that causes movement. For more details, see the page on Levers. Bernoulli EffectIf an object has a curved top and flat bottom (e.g. the wing of an aircraft), the air will have to travel over the top of the wing more than the bottom. For the two airflows to reach the rear of the wing simultaneously, the air flowing over the top of the wing will have to flow faster resulting in less pressure above the wing (air is thinner) than below it and the aircraft will lift. This is known as the Bernoulli effect. References
Page ReferenceIf you quote information from this page in your work, then the reference for this page is:
