Sports DrinksDepletion of the body's carbohydrate stores and dehydration are two factors limiting prolonged exercise. DehydrationSweating is how the body maintains its core temperature at 37 degrees centigrade. This results in losing body fluid and electrolytes (minerals such as chloride, calcium, magnesium, Sodium and Potassium). If unchecked, it will lead to dehydration, circulatory collapse, and heat stroke.. The effect of fluid loss on the body is as follows (Rehrer 1994)[1]:
ElectrolytesElectrolytes serve three general functions in the body:
The electrolyte composition of sweat is variable but comprises the following components:
A litre of sweat typically contains 0.02g Calcium, a total of 0.05g Magnesium, 1.15g Sodium, a 0.23g potassium, and a 1.48g Chloride. This composition will vary from person to person (Hamilton 2005)[2]. GlucoseCarbohydrate is stored as glucose in the liver and muscles and is the most efficient energy source as it requires less oxygen to be burnt than Protein or fat. The normal body stores of carbohydrates in a typical athlete are:
During hard exercise, carbohydrates can be depleted at 3-4 grams per minute. If this is sustained for 2 hours or more, a large fraction of the total body carbohydrate stores will be exhausted and, if not checked, will result in reduced performance. Recovery of the muscle and liver glycogen stores after exercise will generally require 24-48 hours for complete recovery. During exercise, there is an increased uptake of blood glucose by the muscles and to prevent blood glucose levels falling, the liver produces glucose from the liver stores and lactate. Consuming carbohydrates before, during and after exercise will help prevent blood glucose levels from falling too low and help maintain the body's glycogen stores. Many athletes cannot consume the food before or during exercise, so a formulated drink that will provide carbohydrates is required. HydrationFluid absorptionTwo main factors affect the speed at which fluid from a drink gets into the body:
The higher the carbohydrate levels in a drink, the slower the rate of stomach emptying. Isotonic drinks with a carbohydrate level of 6 and 8% are drained from the stomach at a rate similar to water. In a drink, electrolytes, especially sodium and potassium, will reduce urine output, enable the fluid to empty quickly from the stomach, promote absorption from the intestine, and encourage fluid retention (Unknown 1993)[3]. What is wrong with water?
Calculating personal fluid needsDuring an endurance event, you should drink just enough to be sure you lose no more than 2% of the pre-race weight. This can be achieved in the following way:
Sports DrinksThere are three types of sports drinks, all of which contain various fluid, electrolytes and carbohydrate levels.
The osmolality of a fluid is a measure of the number of particles in a solution. These particles will comprise a drink's carbohydrates, electrolytes, sweeteners, and preservatives. In blood plasma, the particles will contain sodium, proteins and glucose. Blood has an osmolality of 280 to 330mOsm/kg. Drinks with an osmolality of 270 to 330mOsm/kg are said to balance the body's fluid and are called Isotonic. Hypotonic fluids have fewer particles than blood, and hypertonic have more particles than blood. Consuming fluids with a low osmolality, e.g. water, results in a fall in the blood plasma osmolality and reduces the drive to drink well before sufficient fluid has been consumed to replace losses. Which is most suitable?Isotonic - quickly replaces fluids lost by sweating and supplies a carbohydrate boost. This drink is the choice for most athletes - middle and long-distance running or team sports. Glucose is the body's preferred source of energy. It may be appropriate to consume Isotonic drinks where the carbohydrate source is glucose in a concentration of 6% to 8%, e.g. High Five, SiS Go, Boots Isotonic, Lucozade Sport. Hypotonic - quickly replaces fluids lost by sweating. Suitable for athletes who need fluid without the boost of carbohydrates, e.g. jockeys and gymnasts. Hypertonic - used to supplement daily carbohydrate intake normally after exercise to top up muscle glycogen stores. In ultra-distance events, high energy levels are required, and Hypertonic drinks can be taken during exercise to meet the energy demands. If used during exercise Hypertonic drinks need to be used in conjunction with Isotonic drinks to replace fluids. Want to make your own?Isotonic - 200ml of orange squash (concentrated orange), 1 litre of water and a pinch of salt (1g). Mix all the ingredients and keep chilled Hypotonic - 100ml of orange squash (concentrated orange), 1 litre of water and a pinch of salt (1g). Mix all the ingredients and keep chilled. Hypertonic - 400ml of orange squash (concentrated orange), 1 litre of water and a pinch of salt (1g). Mix all the ingredients and keep chilled. Dental HealthSports drinks commonly contain citric acid. All acids have an erosive potential, but the method of drinking will influence whether or not those acids affect the teeth. Sports drinks should be consumed as quickly as possible, preferably with a straw and not be held or swished around the mouth. Retaining drinks in the mouth will only increase the risk of erosion. Refrigerated drinks will have reduced erosive potential, as the acid dissolution constant is temperature-dependent (Milosevic et al. 1997)[4]. Food for thoughtIn a trial conducted by scientists in Aberdeen, it was determined that a 2% carbohydrate-electrolyte drink provided more effective combat to exercise fatigue in a hot climate compared to a 15% carbohydrate-electrolyte mixture mixture (Galloway and Maughan 2000)[5]. Seven Rules of Hydration (Troop 1994)[6]
Water IntoxicationIntracellular fluid and interstitial fluid have the same osmotic pressures Intracellular fluid and interstitial fluid have the same osmotic pressures under normal circumstances. The principal cation inside the cell is Potassium, and the principal cation outside the cell is Sodium. A fluid imbalance between these two compartments is caused by a change in the Potassium or Sodium concentration. Sodium balance in the body is controlled by aldosterone and antidiuretic hormone (ADH). Aldosterone regulates extracellular fluid volume by adjusting the amount of Sodium reabsorbed by the blood from the kidneys. ADH regulates extracellular fluid electrolyte concentration by adjusting the amount of water reabsorbed into the blood by the kidneys. Certain conditions may result in a decrease in sodium concentration in interstitial fluid. For instance, during sweating, the skin excretes Sodium and water. We may produce a sodium deficit if we replace the lost fluid with plain water. The decrease in sodium concentration in the interstitial fluid lowers the osmotic pressure and establishes an effective water concentration between the interstitial fluid and the intracellular fluid. Water moves from the interstitial fluid into the cells, producing two results that can be pretty serious:
AlcoholAlcohol is a high-octane fuel, but it cannot be metabolised to provide energy except in the liver and then only at a very slow rate. The energy provided by alcohol tends to be converted to fat, and excessive consumption may cause liver damage. As a diuretic, it will cause dehydration and evidence suggest that vitamin B and C may be depleted. Excessive alcohol will diminish aerobic capacity and impair motor function. References
Page ReferenceIf you quote information from this page in your work, then the reference for this page is:
|